Extensions 1→N→G→Q→1 with N=C22 and Q=C2×Dic14

Direct product G=N×Q with N=C22 and Q=C2×Dic14
dρLabelID
C23×Dic14448C2^3xDic14448,1365

Semidirect products G=N:Q with N=C22 and Q=C2×Dic14
extensionφ:Q→Aut NdρLabelID
C221(C2×Dic14) = D4×Dic14φ: C2×Dic14/Dic14C2 ⊆ Aut C22224C2^2:1(C2xDic14)448,990
C222(C2×Dic14) = C2×C22⋊Dic14φ: C2×Dic14/C2×Dic7C2 ⊆ Aut C22224C2^2:2(C2xDic14)448,934
C223(C2×Dic14) = C2×C28.48D4φ: C2×Dic14/C2×C28C2 ⊆ Aut C22224C2^2:3(C2xDic14)448,1237

Non-split extensions G=N.Q with N=C22 and Q=C2×Dic14
extensionφ:Q→Aut NdρLabelID
C22.1(C2×Dic14) = D45Dic14φ: C2×Dic14/Dic14C2 ⊆ Aut C22224C2^2.1(C2xDic14)448,992
C22.2(C2×Dic14) = D46Dic14φ: C2×Dic14/Dic14C2 ⊆ Aut C22224C2^2.2(C2xDic14)448,996
C22.3(C2×Dic14) = C2×C28.53D4φ: C2×Dic14/C2×Dic7C2 ⊆ Aut C22224C2^2.3(C2xDic14)448,657
C22.4(C2×Dic14) = C23.Dic14φ: C2×Dic14/C2×Dic7C2 ⊆ Aut C221124C2^2.4(C2xDic14)448,658
C22.5(C2×Dic14) = C232Dic14φ: C2×Dic14/C2×Dic7C2 ⊆ Aut C22112C2^2.5(C2xDic14)448,936
C22.6(C2×Dic14) = C42.88D14φ: C2×Dic14/C2×Dic7C2 ⊆ Aut C22224C2^2.6(C2xDic14)448,970
C22.7(C2×Dic14) = C42.90D14φ: C2×Dic14/C2×Dic7C2 ⊆ Aut C22224C2^2.7(C2xDic14)448,972
C22.8(C2×Dic14) = C2×C56.C4φ: C2×Dic14/C2×C28C2 ⊆ Aut C22224C2^2.8(C2xDic14)448,641
C22.9(C2×Dic14) = M4(2).Dic7φ: C2×Dic14/C2×C28C2 ⊆ Aut C221124C2^2.9(C2xDic14)448,659
C22.10(C2×Dic14) = C42.274D14φ: C2×Dic14/C2×C28C2 ⊆ Aut C22224C2^2.10(C2xDic14)448,923
C22.11(C2×Dic14) = C14.72+ 1+4φ: C2×Dic14/C2×C28C2 ⊆ Aut C22224C2^2.11(C2xDic14)448,953
C22.12(C2×Dic14) = (C2×C28)⋊Q8central extension (φ=1)448C2^2.12(C2xDic14)448,180
C22.13(C2×Dic14) = C14.(C4×Q8)central extension (φ=1)448C2^2.13(C2xDic14)448,181
C22.14(C2×Dic14) = C4⋊Dic78C4central extension (φ=1)448C2^2.14(C2xDic14)448,188
C22.15(C2×Dic14) = C14.(C4×D4)central extension (φ=1)448C2^2.15(C2xDic14)448,189
C22.16(C2×Dic14) = C284(C4⋊C4)central extension (φ=1)448C2^2.16(C2xDic14)448,462
C22.17(C2×Dic14) = (C2×C28)⋊10Q8central extension (φ=1)448C2^2.17(C2xDic14)448,463
C22.18(C2×Dic14) = C4×Dic7⋊C4central extension (φ=1)448C2^2.18(C2xDic14)448,465
C22.19(C2×Dic14) = (C2×C42).D7central extension (φ=1)448C2^2.19(C2xDic14)448,467
C22.20(C2×Dic14) = C4×C4⋊Dic7central extension (φ=1)448C2^2.20(C2xDic14)448,468
C22.21(C2×Dic14) = C428Dic7central extension (φ=1)448C2^2.21(C2xDic14)448,469
C22.22(C2×Dic14) = C429Dic7central extension (φ=1)448C2^2.22(C2xDic14)448,470
C22.23(C2×Dic14) = C24.44D14central extension (φ=1)224C2^2.23(C2xDic14)448,476
C22.24(C2×Dic14) = C24.46D14central extension (φ=1)224C2^2.24(C2xDic14)448,480
C22.25(C2×Dic14) = C24.47D14central extension (φ=1)224C2^2.25(C2xDic14)448,484
C22.26(C2×Dic14) = C28⋊(C4⋊C4)central extension (φ=1)448C2^2.26(C2xDic14)448,507
C22.27(C2×Dic14) = (C4×Dic7)⋊8C4central extension (φ=1)448C2^2.27(C2xDic14)448,510
C22.28(C2×Dic14) = (C4×Dic7)⋊9C4central extension (φ=1)448C2^2.28(C2xDic14)448,511
C22.29(C2×Dic14) = C4⋊(C4⋊Dic7)central extension (φ=1)448C2^2.29(C2xDic14)448,519
C22.30(C2×Dic14) = C2×C14.C42central extension (φ=1)448C2^2.30(C2xDic14)448,742
C22.31(C2×Dic14) = C24.62D14central extension (φ=1)224C2^2.31(C2xDic14)448,744
C22.32(C2×Dic14) = C23.27D28central extension (φ=1)224C2^2.32(C2xDic14)448,746
C22.33(C2×Dic14) = C2×C4×Dic14central extension (φ=1)448C2^2.33(C2xDic14)448,920
C22.34(C2×Dic14) = C2×C282Q8central extension (φ=1)448C2^2.34(C2xDic14)448,921
C22.35(C2×Dic14) = C2×C28.6Q8central extension (φ=1)448C2^2.35(C2xDic14)448,922
C22.36(C2×Dic14) = C2×C28⋊Q8central extension (φ=1)448C2^2.36(C2xDic14)448,950
C22.37(C2×Dic14) = C2×C28.3Q8central extension (φ=1)448C2^2.37(C2xDic14)448,952
C22.38(C2×Dic14) = C22×Dic7⋊C4central extension (φ=1)448C2^2.38(C2xDic14)448,1236
C22.39(C2×Dic14) = C22×C4⋊Dic7central extension (φ=1)448C2^2.39(C2xDic14)448,1238
C22.40(C2×Dic14) = (C2×Dic7)⋊Q8central stem extension (φ=1)448C2^2.40(C2xDic14)448,190
C22.41(C2×Dic14) = C2.(C28⋊Q8)central stem extension (φ=1)448C2^2.41(C2xDic14)448,191
C22.42(C2×Dic14) = (C2×C4).Dic14central stem extension (φ=1)448C2^2.42(C2xDic14)448,194
C22.43(C2×Dic14) = C14.(C4⋊Q8)central stem extension (φ=1)448C2^2.43(C2xDic14)448,195
C22.44(C2×Dic14) = C23⋊Dic14central stem extension (φ=1)224C2^2.44(C2xDic14)448,481
C22.45(C2×Dic14) = C24.6D14central stem extension (φ=1)224C2^2.45(C2xDic14)448,482
C22.46(C2×Dic14) = C24.7D14central stem extension (φ=1)224C2^2.46(C2xDic14)448,483
C22.47(C2×Dic14) = (C2×C4)⋊Dic14central stem extension (φ=1)448C2^2.47(C2xDic14)448,513
C22.48(C2×Dic14) = (C2×C28).54D4central stem extension (φ=1)448C2^2.48(C2xDic14)448,518
C22.49(C2×Dic14) = (C2×C28).55D4central stem extension (φ=1)448C2^2.49(C2xDic14)448,520

׿
×
𝔽